Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
2.
Egypt J Immunol ; 29(4): 58-74, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2046332

ABSTRACT

The single-stranded RNA virus (coronavirus 2019) pandemic has represented a massive influence on health care professionals and communities around the world. This virus is accompanied by a range of respiratory disorders. Morbidity and mortality are in elevation among pregnant mothers. COVID-19 vaccine is considered safe for the majority of the population. Safety concerns were raised toward pregnant mothers and the COVID-19 vaccine. In the present study, data were taken out from relevant manuscripts; from 20th April 2021 to 25th December 2021. In this study, literature reviews from the most comprehensive health database on 100 papers published during 2020 and 2021 were used. This review article aimed to assess the present evidence available in the literature about the possible effect of COVID-19 on pregnant mothers and their fetuses and, to address considerations for maternal COVID-19 vaccine based on the review of existing data to aid in spreading the awareness about the benefits of vaccine that could save lives. In general, COVID-19 vaccines resulted in reducing the ability of virus transmission and patients' hospitalization. COVID-19 vaccines will never cause infection of corona virus. Evidence showed that COVID-19 vaccines from any brand will reduce the mortality and morbidity. However, available data indicated that possible deterioration of the clinical conditions of pregnant mothers infected with COVID-19 cannot be excluded. Primary outcomes did not show clear safety signs among pregnant mothers who received COVID-19 vaccines. This is because pregnant and lactating mothers were excluded from COVID-19 vaccine studies. Thus, data to lead vaccine decision-making are inadequate. More longitudinal follow up studies are necessary to reinforce the safety of the vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Lactation , Pregnancy Complications, Infectious , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Female , Humans , Milk, Human/immunology , Pregnancy , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , Vaccination
3.
BMC Pregnancy Childbirth ; 21(1): 632, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1923519

ABSTRACT

BACKGROUND: Immunological protection via breastfeeding is well known. The immunological profile of human milk changes during lactation. No clinical trials have been conducted in lactating women with the newest mRNA vaccines against SARS- CoV-2. A Few studies have shown the presence of antibodies in breastmilk after vaccination. The aim of this work is to study possible antibodies transfer via breastmilk and also the immunological characteristics of lactating women compared to non-lactating women, after using the BNT162b2 Pfizer vaccine. METHODS: This is a prospective cohort study with a convenience homogenous sample of 24 healthcare workers (14 lactating and 10 non-lactating women) enrolled at the time of COVID-19 vaccination. Clinical data was registered in a questionnaire. Titers of SARS-CoV-2 spike IgG, IgA and IgM were quantified in post vaccination blood and human milk. Antibody quantification was performed by an in-house ELISA to SARS-CoV-2 trimeric spike protein. RESULTS: All women showed immunity after vaccination with positive antibodies for IgM, IgA and IgG antibodies. The dominant serum antibody response was IgG. Modest levels of antibodies in breastmilk of lactating mothers were observed in this study, especially IgG in 42.9%. There was a moderate association between higher titers of IgG and a longer duration of breastfeeding (R= 0.55, p=0.041). CONCLUSIONS: Evidence of antibody transfer in human milk after COVID-19 vaccination is scarce. The presence of antibodies in human milk is reported, but immunization through breastfeeding is still to be established.


Subject(s)
Antibodies, Viral/metabolism , Breast Feeding , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Lactation/immunology , Milk, Human/immunology , SARS-CoV-2/immunology , Adult , BNT162 Vaccine , Biomarkers/metabolism , COVID-19/immunology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunization, Passive , Prospective Studies
4.
Front Immunol ; 12: 801797, 2021.
Article in English | MEDLINE | ID: covidwho-1793017

ABSTRACT

Background: Limited data are available regarding the balance of risks and benefits from human milk and/or breastfeeding during and following maternal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To investigate whether SARS-CoV-2 can be detected in milk and on the breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) during the 2 months after onset of symptoms or positive diagnostic test. Methods: Using a longitudinal study design, we collected milk and breast skin swabs one to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2 RNA, and milk was tested for anti-RBD IgA. Results: SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs. Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316) milk samples contained anti-RBD IgA, and concentrations increased (P=.02) during the first two weeks following onset of COVID-19 symptoms or positive test. Milk-borne anti-RBD IgA persisted for at least two months in 77% of women. Conclusion: Milk produced by women with COVID-19 does not contain SARS-CoV-2 and is likely a lasting source of passive immunity via anti-RBD IgA. These results support recommendations encouraging lactating women to continue breastfeeding during and after COVID-19 illness.


Subject(s)
Antibodies, Viral/analysis , Immunoglobulin A/analysis , Milk, Human/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Breast Feeding , COVID-19/immunology , Female , Humans , Immunization, Passive , Immunoglobulin A/immunology , Lactation , Longitudinal Studies , Milk, Human/virology , RNA, Viral/genetics
5.
STAR Protoc ; 3(1): 101203, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1740310

ABSTRACT

Antibodies in milk obtained from those previously SARS-CoV-2-infected or vaccinated against COVID-19 may provide passive immunity to the breastfed infant. Few assays have been established to measure antibodies in human milk, despite the public health importance of this topic. In the present protocol, we describe an optimized indirect ELISA assay aimed to measure SARS-CoV-2-reactive antibodies in human milk, which can be used as a rapid screen on undiluted samples or to designate samples as relatively low, moderate, or high titer. For complete details on the use and execution of this protocol, please refer to Fox et al. (2020).


Subject(s)
Antibodies, Viral/analysis , Immunoassay/methods , Milk, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans
6.
Front Immunol ; 12: 783975, 2021.
Article in English | MEDLINE | ID: covidwho-1699418

ABSTRACT

Background: There is limited information on the functional neutralizing capabilities of breastmilk SARS-CoV-2-specific antibodies and the potential adulteration of breastmilk with vaccine mRNA after SARS-CoV-2 mRNA vaccination. Methods: We conducted a prospective cohort study of lactating healthcare workers who received the BNT162b2 vaccine and their infants. The presence of SARS-CoV-2 neutralizing antibodies, antibody isotypes (IgG, IgA, IgM) and intact mRNA in serum and breastmilk was evaluated at multiple time points using a surrogate neutralizing assay, ELISA, and PCR, over a 6 week period of the two-dose vaccination given 21 days apart. Results: Thirty-five lactating mothers, median age 34 years (IQR 32-36), were included. All had detectable neutralizing antibodies in the serum immediately before dose 2, with significant increase in neutralizing antibody levels 7 days after this dose [median 168.4 IU/ml (IQR 100.7-288.5) compared to 2753.0 IU/ml (IQR 1627.0-4712.0), p <0.001]. Through the two vaccine doses, all mothers had detectable IgG1, IgA and IgM isotypes in their serum, with a notable increase in all three antibody isotypes after dose 2, especially IgG1 levels. Neutralizing antibodies were detected in majority of breastmilk samples a week after dose 2 [median 13.4 IU/ml (IQR 7.0-28.7)], with persistence of these antibodies up to 3 weeks after. Post the second vaccine dose, all (35/35, 100%) mothers had detectable breastmilk SARS-CoV-2 spike RBD-specific IgG1 and IgA antibody and 32/35 (88.6%) mothers with IgM. Transient, low intact vaccine mRNA levels was detected in 20/74 (27%) serum samples from 21 mothers, and 5/309 (2%) breastmilk samples from 4 mothers within 1 weeks of vaccine dose. Five infants, median age 8 months (IQR 7-16), were also recruited - none had detectable neutralizing antibodies or vaccine mRNA in their serum. Conclusion: Majority of lactating mothers had detectable SARS-CoV-2 antibody isotypes and neutralizing antibodies in serum and breastmilk, especially after dose 2 of BNT162b2 vaccination. Transient, low levels of vaccine mRNA were detected in the serum of vaccinated mothers with occasional transfer to their breastmilk, but we did not detect evidence of infant sensitization. Importantly, the presence of breastmilk neutralising antibodies likely provides a foundation for passive immunisation of the breastmilk-fed infant.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , BNT162 Vaccine/administration & dosage , Milk, Human/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/analysis , BNT162 Vaccine/blood , Cohort Studies , Female , Health Personnel , Humans , Immunoglobulin Isotypes/analysis , Immunoglobulin Isotypes/blood , Infant , Lactation , Milk, Human/chemistry , Prospective Studies
8.
Front Immunol ; 12: 808064, 2021.
Article in English | MEDLINE | ID: covidwho-1649357

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in pregnancy is associated with a higher risk for severe morbidity and mortality when compared with infection in non-pregnant women of childbearing age. An increasing number of countries recommend immunization against SARS-CoV-2 in pregnant women. Recent studies provide preliminary and supportive evidence on safety, immunogenicity and effectiveness of coronavirus disease 2019 (COVID-19) vaccines in pregnant women; however, important knowledge gaps remain which warrant further studies. This collaborative consensus paper provides a review of the current literature on COVID-19 vaccines in pregnant women, identifies knowledge gaps and outlines priorities for future research to optimize protection against SARS-CoV-2 in the pregnant women and their infants.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Maternal-Fetal Exchange/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , Ad26COVS1/adverse effects , Ad26COVS1/immunology , Adoptive Transfer , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , COVID-19/immunology , Female , Humans , Infectious Disease Transmission, Vertical/prevention & control , Milk, Human/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/virology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccine Efficacy/statistics & numerical data
9.
JAMA Pediatr ; 176(1): 99-100, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1649201
11.
Cell Rep Med ; 2(12): 100468, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1550142

ABSTRACT

In view of the scarcity of data to guide decision making, we evaluated how BNT162b2 and mRNA-1273 vaccines affect the immune response in lactating women and the protective profile of breastmilk. Compared with controls, lactating women had a higher frequency of circulating RBD memory B cells and higher anti-RBD antibody titers but similar neutralizing capacity. We show that upon vaccination, immune transfer to breastmilk occurs through a combination of anti-spike secretory IgA (SIgA) antibodies and spike-reactive T cells. Although we found that the concentration of anti-spike IgA in breastmilk might not be sufficient to directly neutralize SARS-CoV-2, our data suggest that cumulative transfer of IgA might provide the infant with effective neutralization capacity. Our findings put forward the possibility that breastmilk might convey both immediate (through anti-spike SIgA) and long-lived (via spike-reactive T cells) immune protection to the infant. Further studies are needed to address this possibility and to determine the functional profile of spike T cells.


Subject(s)
COVID-19 Vaccines/immunology , Immunoglobulin A, Secretory/immunology , Milk, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunity, Maternally-Acquired , Lactation/immunology , Memory B Cells/immunology , Vaccination , mRNA Vaccines/immunology
12.
Pharmacotherapy ; 42(1): 58-70, 2022 01.
Article in English | MEDLINE | ID: covidwho-1530208

ABSTRACT

Pregnant and postpartum individuals are known to have an elevated risk of severe COVID-19 compared with their non-pregnant counterparts. Vaccination is the most important intervention to protect these populations from COVID-19-related morbidity and mortality. An added benefit of maternal COVID-19 vaccination is transfer of maternal immunity to newborns and infants, for whom a vaccine is not (yet) approved. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific binding and neutralizing antibodies are present in infant cord blood and breast milk following natural maternal infection and transfer of maternal immunity following COVID-19 vaccination is an area of active research. In this review, we synthesize the available research, discuss knowledge gaps, and outline factors that should be evaluated and reported when studying the transfer of maternal immunity following COVID-19 vaccination. The data reviewed herein suggest that maternal SARS-CoV-2-specific binding antibodies are efficiently transferred via the placenta and breast milk following maternal mRNA COVID-19 vaccination. Moreover, antibodies retain strong neutralizing capacity. Antibody concentrations appear to be at least as high in infant cord blood as in the maternal serum, but lower in breast milk. Breast milk IgA rises rapidly following maternal vaccination, whereas IgG rises later but may persist longer. At least two COVID-19 vaccine doses appear to be required to reach maximal antibody concentrations in cord blood and breast milk. There is no indication that infants consuming breast milk from vaccinated mothers experience serious adverse effects, although follow-up is limited. No clear pattern has emerged regarding changes in milk supply following maternal vaccination. The heterogeneity in important methodological aspects of reviewed studies underscores the need to establish standard best practices related to research on the transfer of maternal COVID-19 vaccine-induced immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Viral/analysis , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Humans , Infant, Newborn , Milk, Human/immunology , Pregnancy , SARS-CoV-2/immunology
13.
Front Immunol ; 12: 777103, 2021.
Article in English | MEDLINE | ID: covidwho-1528826

ABSTRACT

Background: Data regarding symptoms in the lactating mother-infant dyad and their immune response to COVID-19 mRNA vaccination during lactation are needed to inform vaccination guidelines. Methods: From a prospective cohort of 50 lactating individuals who received mRNA-based vaccines for COVID-19 (mRNA-1273 and BNT162b2), blood and milk samples were collected prior to first vaccination dose, immediately prior to 2nd dose, and 4-10 weeks after 2nd dose. Symptoms in mother and infant were assessed by detailed questionnaires. Anti-SARS-CoV-2 antibody levels in blood and milk were measured by Pylon 3D automated immunoassay and ELISA. In addition, vaccine-related PEGylated proteins in milk were measured by ELISA. Blood samples were collected from a subset of infants whose mothers received the vaccine during lactation (4-15 weeks after mothers' 2nd dose). Results: No severe maternal or infant adverse events were reported in this cohort. Two mothers and two infants were diagnosed with COVID-19 during the study period before achieving full immune response. PEGylated proteins were not found at significant levels in milk after vaccination. After vaccination, levels of anti-SARS-CoV-2 IgG and IgM significantly increased in maternal plasma and there was significant transfer of anti-SARS-CoV-2-Receptor Binding Domain (anti-RBD) IgA and IgG antibodies to milk. Milk IgA levels after the 2nd dose were negatively associated with infant age. Anti-SARS-CoV-2 IgG antibodies were not detected in the plasma of infants whose mothers were vaccinated during lactation. Conclusions: COVID-19 mRNA vaccines generate robust immune responses in plasma and milk of lactating individuals without severe adverse events reported.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , Lactation/immunology , Milk, Human/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/prevention & control , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Infant , Infant, Newborn , Male , Middle Aged
14.
Breastfeed Med ; 17(2): 163-172, 2022 02.
Article in English | MEDLINE | ID: covidwho-1528149

ABSTRACT

Background: New variants are evolving in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and receptor binding domain (RBD) mutations have been associated with a higher capacity to evade neutralizing antibodies (NAbs). We aimed at determining the impact of COVID-19 vaccine and infection on human milk antibody titers and activity against the RBD mutations from SARS-CoV-2 variants of concern. Materials and Methods: Milk samples were collected from 19 COVID-19 vaccinated women, 10 women who had a positive COVID-19 PCR test, and 13 unvaccinated women. The titers and NAbs of secretory IgA (SIgA)/IgA, secretory IgM (IgM)/IgM, and IgG against SARS-CoV-2 RBD with mutations N501Y or E484K were measured by using ELISA and a surrogate virus neutralization assay. Results: The titers of human milk IgG against N501Y were higher in the COVID-19 vaccine group than in the no-vaccine group but comparable with the COVID-19 PCR group. Other antibody titers did not differ between the three groups. The titers of SIgA/IgA were higher than those of SIgM/IgM and IgG in all three groups. The titers of SIgM/IgM and the inhibition of NAbs were higher against the mutation E484K than N501Y. Milk NAb did not differ between the three groups, but the inhibition of NAb against binding of the two mutant RBD proteins to their receptor was higher in the COVID-19 vaccine and PCR groups than in milk from prepandemic women. Conclusions: COVID-19 vaccination and exposure of mothers to SARS-CoV-2 influenced the titers and NAbs in breast milk against the variants of concern.


Subject(s)
Antibodies, Viral/immunology , COVID-19 , Milk, Human/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Breast Feeding , COVID-19/immunology , COVID-19 Vaccines , Female , Humans , Mutation , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
JAMA Pediatr ; 176(2): 159-168, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1508592

ABSTRACT

Importance: Long-term effect of parental COVID-19 infection vs vaccination on human milk antibody composition and functional activity remains unclear. Objective: To compare temporal IgA and IgG response in human milk and microneutralization activity against SARS-CoV-2 between lactating parents with infection and vaccinated lactating parents out to 90 days after infection or vaccination. Design, Setting, and Participants: Convenience sampling observational cohort (recruited July to December 2020) of lactating parents with infection with human milk samples collected at days 0 (within 14 days of diagnosis), 3, 7, 10, 28, and 90. The observational cohort included vaccinated lactating parents with human milk collected prevaccination, 18 days after the first dose, and 18 and 90 days after the second dose. Exposures: COVID-19 infection diagnosed by polymerase chain reaction within 14 days of consent or receipt of messenger RNA (mRNA) COVID-19 vaccine (BNT162b2 or mRNA-1273). Main Outcomes and Measures: Human milk anti-SARS-CoV-2 receptor-binding domain IgA and IgG and microneutralization activity against live SARS-CoV-2 virus. Results: Of 77 individuals, 47 (61.0%) were in the infection group (mean [SD] age, 29.9 [4.4] years), and 30 (39.0%) were in the vaccinated group (mean [SD] age, 33.0 [3.4] years; P = .002). The mean (SD) age of infants in the infection and vaccinated group were 3.1 (2.2) months and 7.5 (5.2) months, respectively (P < .001). Infection was associated with a variable human milk IgA and IgG receptor-binding domain-specific antibody response over time that was classified into different temporal patterns: upward trend and level trend (33 of 45 participants [73%]) and low/no response (12 of 45 participants [27%]). Infection was associated with a robust and quick IgA response in human milk that was stable out to 90 days after diagnosis. Vaccination was associated with a more uniform IgG-dominant response with concentrations increasing after each vaccine dose and beginning to decline by 90 days after the second dose. Vaccination was associated with increased human milk IgA after the first dose only (mean [SD] increase, 31.5 [32.6] antibody units). Human milk collected after infection and vaccination exhibited microneutralization activity. Microneutralization activity increased throughout time in the vaccine group only (median [IQR], 2.2 [0] before vaccine vs 10 [4.0] after the first dose; P = .003) but was higher in the infection group (median [IQR], 20 [67] at day 28) vs the vaccination group after the first-dose human milk samples (P = .002). Both IgA and non-IgA (IgG-containing) fractions of human milk from both participants with infection and those who were vaccinated exhibited microneutralization activity against SARS-CoV-2. Conclusions and Relevance: In this cohort study of a convenience sample of lactating parents, the pattern of IgA and IgG antibodies in human milk differed between COVID-19 infection vs mRNA vaccination out to 90 days. While infection was associated with a highly variable IgA-dominant response and vaccination was associated with an IgG-dominant response, both were associated with having human milk that exhibited neutralization activity against live SARS-CoV-2 virus.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , Milk, Human/immunology , SARS-CoV-2/immunology , Adult , Cohort Studies , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Infant , Lactation , Male
16.
JAMA Netw Open ; 4(11): e2132563, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1499193

ABSTRACT

Importance: Although several studies have provided information on short-term clinical outcomes in children with perinatal exposure to SARS-CoV-2, data on the immune response in the first months of life among newborns exposed to the virus in utero are lacking. Objective: To characterize systemic and mucosal antibody production during the first 2 months of life among infants who were born to mothers infected with SARS-CoV-2. Design, Setting, and Participants: This prospective cohort study enrolled 28 pregnant women who tested positive for SARS-CoV-2 infection and who gave birth at Policlinico Umberto I in Rome, Italy, from November 2020 to May 2021, and their newborns. Maternal and neonatal systemic immune responses were investigated by detecting spike-specific antibodies in serum, and the mucosal immune response was assessed by measuring specific antibodies in maternal breastmilk and infant saliva 48 hours after delivery and 2 months later. Exposures: Maternal infection with SARS-CoV-2 in late pregnancy. Main Outcomes and Measures: The systemic immune response was evaluated by the detection of SARS-CoV-2 IgG and IgA antibodies and receptor binding domain-specific IgM antibodies in maternal and neonatal serum. The mucosal immune response was assessed by measuring spike-specific antibodies in breastmilk and in infant saliva, and the presence of antigen-antibody spike IgA immune complexes was investigated in breastmilk samples. All antibodies were detected using an enzyme-linked immunosorbent assay. Results: In total, 28 mother-infant dyads (mean [SD] maternal age, 31.8 [6.4] years; mean [SD] gestational age, 38.1 [2.3] weeks; 18 [60%] male infants) were enrolled at delivery, and 21 dyads completed the study at 2 months' follow-up. Because maternal infection was recent in all cases, transplacental transfer of virus spike-specific IgG antibodies occurred in only 1 infant. One case of potential vertical transmission and 1 case of horizontal infection were observed. Virus spike protein-specific salivary IgA antibodies were significantly increased (P = .01) in infants fed breastmilk (0.99 arbitrary units [AU]; IQR, 0.39-1.68 AU) vs infants fed an exclusive formula diet (0.16 AU; IQR, 0.02-0.83 AU). Maternal milk contained IgA spike immune complexes at 48 hours (0.53 AU; IQR, 0.25-0.39 AU) and at 2 months (0.09 AU; IQR, 0.03-0.17 AU) and may have functioned as specific stimuli for the infant mucosal immune response. Conclusions and Relevance: In this cohort study, SARS-CoV-2 spike-specific IgA antibodies were detected in infant saliva, which may partly explain why newborns are resistant to SARS-CoV-2 infection. Mothers infected in the peripartum period appear to not only passively protect the newborn via breastmilk secretory IgA but also actively stimulate and train the neonatal immune system via breastmilk immune complexes.


Subject(s)
COVID-19/immunology , Immunoglobulin A/immunology , Milk, Human/immunology , Pregnancy Complications, Infectious/immunology , Adult , COVID-19/blood , COVID-19/transmission , COVID-19 Serological Testing , Female , Humans , Immunoglobulin A/isolation & purification , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical/prevention & control , Male , Pregnancy , Pregnancy Complications, Infectious/blood , Prospective Studies , SARS-CoV-2 , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology
17.
Cell Rep ; 37(6): 109959, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1474393

ABSTRACT

Antibody transfer via breastmilk represents an evolutionary strategy to boost immunity in early life. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies have been observed in the breastmilk, the functional quality of these antibodies remains unclear. Here, we apply systems serology to characterize SARS-CoV-2-specific antibodies in maternal serum and breastmilk to compare the functional characteristics of antibodies in these fluids. Distinct SARS-CoV-2-specific antibody responses are observed in the serum and breastmilk of lactating individuals previously infected with SARS-CoV-2, with a more dominant transfer of immunoglobulin A (IgA) and IgM into breastmilk. Although IgGs are present in breastmilk, they are functionally attenuated. We observe preferential transfer of antibodies capable of eliciting neutrophil phagocytosis and neutralization compared to other functions, pointing to selective transfer of certain functional antibodies to breastmilk. These data highlight the preferential transfer of SARS-CoV-2-specific IgA and IgM to breastmilk, accompanied by select IgG subpopulations, positioned to create a non-pathologic but protective barrier against coronavirus disease 2019 (COVID-19).


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Milk, Human/immunology , SARS-CoV-2/immunology , Antibody Formation/immunology , Female , Humans , Immunoglobulin Isotypes/immunology , Lactation/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Spike Glycoprotein, Coronavirus/immunology
18.
Nutrients ; 13(9)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374474

ABSTRACT

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that was declared a Public Health Emergency of International Concern by the World Health Organization (WHO). One major problem faced is whether breastfeeding by mothers infected with the virus is safe. The objective of this work is to study the impact that the SARS-CoV-2 virus can have on breastfeeding, and whether the virus or antibodies can be transmitted from mother to child through milk. We carried out a systematic review of studies focusing on the impact of SARS-CoV-2 on breastfeeding by mothers infected with the virus. The bibliographic search was done through Medline (Pubmed), MedlinePlus and Google Scholar. From 292 records, the title and summary of each were examined according to the criteria, and whether they meet the selection criteria was also analysed. A total of 30 articles are included, of which 26 deal with the study of RNA virus in breastmilk and its involvement in breastfeeding and four on the study of SARS-CoV-2 antibodies in milk. Most studies have been conducted in China. Breastfeeding by mothers infected with SARS-CoV-2 is highly recommended for infants, if the health of the mother and the infant allow for it. Direct breastfeeding and maintaining appropriate protective measures should be encouraged. Should the mother's health condition not permit direct breastfeeding, infants should be fed with pumped breastmilk or donor milk.


Subject(s)
Breast Feeding/adverse effects , COVID-19/transmission , Infectious Disease Transmission, Vertical/prevention & control , Milk, Human/immunology , Pregnancy Complications, Infectious/virology , COVID-19/immunology , COVID-19/virology , Female , Humans , Infant , Milk, Human/virology , Pregnancy , SARS-CoV-2/immunology
20.
Arch Dis Child Fetal Neonatal Ed ; 107(2): 216-221, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1367412

ABSTRACT

OBJECTIVES: To develop and validate a specific protocol for SARS-CoV-2 detection in breast milk matrix and to determine the impact of maternal SARS-CoV-2 infection on the presence, concentration and persistence of specific SARS-CoV-2 antibodies. DESIGN AND PATIENTS: This is a prospective, multicentre longitudinal study (April-December 2020) in 60 mothers with SARS-CoV-2 infection and/or who have recovered from COVID-19. A control group of 13 women before the pandemic were also included. SETTING: Seven health centres from different provinces in Spain. MAIN OUTCOME MEASURES: Presence of SARS-CoV-2 RNA in breast milk, targeting the N1 region of the nucleocapsid gene and the envelope (E) gene; presence and levels of SARS-CoV-2-specific immunoglobulins (Igs)-IgA, IgG and IgM-in breast milk samples from patients with COVID-19. RESULTS: All breast milk samples showed negative results for presence of SARS-CoV-2 RNA. We observed high intraindividual and interindividual variability in the antibody response to the receptor-binding domain of the SARS-CoV-2 spike protein for each of the three isotypes IgA, IgM and IgG. Main Protease (MPro) domain antibodies were also detected in milk. 82.9% (58 of 70) of milk samples were positive for at least one of the three antibody isotypes, with 52.9% of these positive for all three Igs. Positivity rate for IgA was relatively stable over time (65.2%-87.5%), whereas it raised continuously for IgG (from 47.8% for the first 10 days to 87.5% from day 41 up to day 206 post-PCR confirmation). CONCLUSIONS: Our study confirms the safety of breast feeding and highlights the relevance of virus-specific SARS-CoV-2 antibody transfer. This study provides crucial data to support official breastfeeding recommendations based on scientific evidence. Trial registration number NCT04768244.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Milk, Human/immunology , Adult , Antibodies, Viral/analysis , Coronavirus Envelope Proteins/analysis , Coronavirus Nucleocapsid Proteins/analysis , Female , Humans , Immunoglobulins/analysis , Longitudinal Studies , Phosphoproteins/analysis , Prospective Studies , RNA, Viral/analysis , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL